
Allsky Camera 
Network for Detecting 

Bolides
Semester 2

Tyler Turner
Vincent Quintero

Jean-Pierre Derbes
Charles Derbes

Client
Dr. Csaba Palotai



What We are Observing

A large meteor (Fireball) 
especially one that explodes

A brilliant meteor that may trail 
bright sparks

Fireball Bolide



Location of Nodes



● Current system is unstable, 

crashing sporadically

● UI lacks polish and is 

cumbersome to use

● Code is large, undocumented, 

and difficult to learn

● Researchers struggle to get new 

helpful features 

● Build software with practical 

long term use

● Rework and upgrade the 

software so future devs can get 

moving faster

● Add documentation 

● Improve UX for researchers 

trying to do the hard stuff

Goals Motivation



Approach

Onboarding

- Improve onboarding process to minimize the risk of critical errors
- Previously a single mistake could lead to the box being sent back to the research team

Monitoring

- Centralized monitoring system allowing researchers to easily track down and configure boxes 
remotely.

Architecture 

- Modification of the architecture to meet our requirements
- Complete rewrite of the codebase with an emphasis on simplicity, expansion, and modularity.



Algorithms and Tools

Python (Hardware IO)
OpenCV (Capture/Process video on Pi)
Ffmpeg (Capture/Process video on Pi)

Golang (Backend)
FastAPI (Create API for uploading files to server)

PyTorch (Classification Model for detecting bolides)
Ansible (Declarative configuration)

SQLite (Light database)
Tailscale (Networking)
Netdata (Monitoring)
Tailwind (GUI Styling)

HTMX (GUI Rendering)
GitHub Actions (CI/CD)

SwaggerDocs (Documentation)
Pytest (Unit tests)

Image Processing Algorithms



Novel Features & Functionalities

1. Classification

2. Centralized UI

3. IoT Setup



Classification

● Currently users must manually sort 
through events to determine which ones 
are interesting

● Classification will be used to do this 
process automatically for the user

● CNN trained on composites of videos 
captured by different nodes



Composite Object proposer
Molding to 512x512



Centralized UI

● Goal is to have a central server that would:

○ Hosts a frontend that controls and views nodes’ data

○ Process video data from nodes (reduce workload of Raspberry Pi)



Current UI
UI is running on the local hardware of 
each node



IoT Style Connectivity
Simplify node setup process



Technical Challenges

Unnecessary Complexity
- Previous system lacks abstraction, documentation, and code modularity

Node package management & versioning
- Bugs & issues arise from unsupported updates to dependencies

Frontend User Experience
- Backend must handle many users making requests



Design



Project Evaluation Criteria

1. Time in seconds to sort all incoming events
2. Accuracy of classification model
3. Web page load time, average button response time 
4. Classification pipeline runtime, emphasis on object proposer speed 
5. How easy (out of 10) is it for the researchers to access all information for a given 

event and perform their tasks
6. Percent of false alarms on humidity sensors
7. Time taken for a researcher who has not interacted with the UI to access a specific 

piece of information (light curve of an event, for example)



Progress Summary
Module/Feature Completion % To Do

UI 25 Tests, session, backend connection, flesh out menus 

Replace current camera code 99 Tests and bugfixes

Server API 99 Tests and bugfixes

Client API 99 Tests and bugfixes

IoT 99 Captive portal, tests and bugfixes

Node setup process 75 Hardware testing process

Classification 99 Explore using transformer architecture, tests and 
bugfixes

General performance and stability 
tests

10 Server stress tests, performance tests, UX evaluation



Milestone 4 (Feb 24)

● Initial frontend implementation
● Client hardware interaction
● Client package management and setup process
● Server and client polish



Milestone 5 (Mar 26)

● Frontend testing
● Server and client testing
● UX measurement and general evaluation
● Senior design poster



Milestone 6 (Apr 21)

● UI Polish
● Final UX modification and polish
● Final evaluation
● Final testing
● Demo videos, documentation, user/developer manual



Task Matrix (Milestone 4)
Task Tyler Vincent Jean-Pierre Charles

Implement UI 10 50 0 40

Polish Server 50 20 30 0

Polish Client 30 20 20 30

Client hardware 
interaction

50 0 0 50

Create setup process 
for node

75 0 25 0



Task Discussion

- Implement UI -> Implement a UI and use researcher feedback to enhance UX

- Polish Server -> Bugs and performance issues

- Polish Client -> Video sending needs more testing since it is a core functionality

- Client hardware interaction -> Hardware code needs to be written in python so that researchers 
find it easier to maintain the code in the future.

- Create Setup Process for Node -> Hardware testing suite



CREDITS: This presentation template was created by Slidesgo, and 
includes icons by Flaticon, and infographics & images by Freepik 

Thanks!

https://www.google.com/url?q=https://bit.ly/3A1uf1Q&sa=D&source=editors&ust=1745857213879386&usg=AOvVaw07OwVid4QfXzPdyLapKrmw
https://www.google.com/url?q=http://bit.ly/2TyoMsr&sa=D&source=editors&ust=1745857213879517&usg=AOvVaw2LvKTp7hjAIYqCgCOKxLvs
https://www.google.com/url?q=http://bit.ly/2TtBDfr&sa=D&source=editors&ust=1745857213879574&usg=AOvVaw1cH285u0g4i8dHfiH8Ocvx

